Back to overview

Oral Poster

Solid-liquid interface confinement and its effect on the crystallization kinetics: Linking molecular-dynamics simulation and phase-field modeling

Thursday (29.09.2016)
12:33 - 12:36
Part of:

One of the central challenges in multiscale modeling,

consists of how to bridge the gap among atomistic and macroscopic approaches in

order to ensure that the descriptions at all levels are quantitatively consistent with

each other. In our work, we carry out this task for the hierarchical coupling approach that

combines molecular dynamics (MD) with phase-field (PF) modeling. The consistency

analysis is achieved by detailed comparisons of quantitative predictions of the

considered modeling methods for the kinetics of crystal growth from the melt. The latter is

a typical multiscale problem in materials physics. The MD simulations provide the physical

quantities needed for the construction of the multiscale model. Of central importance

are the free-energy values of the bulk liquid and of the solid-liquid interface.

In particular, we link MD to PF modeling in order to estimate quantitatively the

influence of the solid-liquid interface confinement (reduced diffusion in liquid) and

of the ’in-plane’ solid-liquid interface ordering on the growth kinetics. These issues will be

illustrated for the binary alloy NiZr and monatomic system Fe. Our observations provide

evidence for a strong link between the interface ordering and the short-range order in the

bulk liquid. These findings are of relevance for the alloy-growth kinetics as well as for the

fundamental issue of local (atomic) structure of metallic liquids.


[1] M. Guerdane, H. Teichler, and B. Nestler, PRL 110, 086105 (2013).


Dr. Mohammed Guerdane
Karlsruhe Institute of Technology (KIT)